Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(34): e2221619120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579148

RESUMEN

The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal-temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksiana and Betula papyrifera) and two temperate (Pinus strobus and Quercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal-temperate ecotone.


Asunto(s)
Micorrizas , Pinus , Ecosistema , Cambio Climático , Bosques , Árboles/fisiología , Pinus/microbiología
2.
New Phytol ; 234(6): 2032-2043, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34559896

RESUMEN

Dead fungal mycelium (necromass) represents a critical component of soil carbon (C) and nutrient cycles. Assessing how the microbial communities associated with decomposing fungal necromass change as global temperatures rise will help in determining how these belowground organic matter inputs contribute to ecosystem responses. In this study, we characterized the structure of bacterial and fungal communities associated with multiple types of decaying mycorrhizal fungal necromass incubated within mesh bags across a 9°C whole ecosystem temperature enhancement in a boreal peatland. We found major taxonomic and functional shifts in the microbial communities present on decaying mycorrhizal fungal necromass in response to warming. These changes were most pronounced in hollow microsites, which showed convergence towards the necromass-associated microbial communities present in unwarmed hummocks. We also observed a high colonization of ericoid mycorrhizal fungal necromass by fungi from the same genera as the necromass. These results indicate that microbial communities associated with mycorrhizal fungal necromass decomposition are likely to change significantly with future climate warming, which may have strong impacts on soil biogeochemical cycles in peatlands. Additionally, the high enrichment of congeneric fungal decomposers on ericoid mycorrhizal necromass may help to explain the increase in ericoid shrub dominance in warming peatlands.


Asunto(s)
Microbiota , Micobioma , Micorrizas , Ecosistema , Micorrizas/fisiología , Suelo/química , Microbiología del Suelo
3.
Sci Adv ; 7(44): eabg8531, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34714680

RESUMEN

Relationships between species diversity, productivity, temporal stability of productivity, and plant invasion have been well documented in grasslands, and these relationships could translate to improved agricultural sustainability. However, few studies have explored these relationships in agricultural contexts where fertility and weeds are managed. Using 7 years of biomass yield and species composition data from 12 species mixture treatments varying in native species diversity, we found that species richness increased yield and interannual yield stability by reducing weed abundance. Stability was driven by yield as opposed to temporal variability of yield. Nitrogen fertilization increased yield but at the expense of yield stability. We show how relationships between diversity, species asynchrony, invasion, productivity, and stability observed in natural grasslands can extend into managed agricultural systems. Increasing bioenergy crop diversity can improve farmer economics via increased yield, reduced yield variability, and reduced inputs for weed control, thus promoting perennial vegetation on agricultural lands.

4.
New Phytol ; 230(4): 1296-1299, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33778943
5.
New Phytol ; 226(2): 569-582, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31622518

RESUMEN

Interactions between symbiotic ectomycorrhizal (EM) and free-living saprotrophs can result in significant deceleration of leaf litter decomposition. While this phenomenon is widely cited, its generality remains unclear, as both the direction and magnitude of EM fungal effects on leaf litter decomposition have been shown to vary among studies. Here we explicitly examine how contrasting leaf litter types and EM fungal communities may lead to differential effects on carbon (C) and nitrogen (N) cycling. Specifically, we measured the response of soil nutrient cycling, litter decay rates, litter chemistry and fungal community structure to the reduction of EM fungi (via trenching) with a reciprocal litter transplant experiment in adjacent Pinus- or Quercus-dominated sites. We found clear evidence of EM fungal suppression of C and N cycling in the Pinus-dominated site, but no suppression in the Quercus-dominated site. Additionally, in the Pinus-dominated site, only the Pinus litter decay rates were decelerated by EM fungi and were associated with decoupling of litter C and N cycling. Our results support the hypothesis that EM fungi can decelerate C cycling via N competition, but strongly suggest that the 'Gadgil effect' is dependent on both substrate quality and EM fungal community composition. We argue that understanding tree host traits as well as EM fungal functional diversity is critical to a more mechanistic understanding of how EM fungi mediate forest soil biogeochemical cycling.


Asunto(s)
Micorrizas , Carbono , Ciclo del Carbono , Hongos , Suelo , Microbiología del Suelo , Árboles
6.
New Phytol ; 223(1): 33-39, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30636276

RESUMEN

The extent to which ectomycorrhizal (ECM) fungi enable plants to access organic nitrogen (N) bound in soil organic matter (SOM) and transfer this growth-limiting nutrient to their plant host, has important implications for our understanding of plant-fungal interactions, and the cycling and storage of carbon (C) and N in terrestrial ecosystems. Empirical evidence currently supports a range of perspectives, suggesting that ECM vary in their ability to provide their host with N bound in SOM, and that this capacity can both positively and negatively influence soil C storage. To help resolve the multiplicity of observations, we gathered a group of researchers to explore the role of ECM fungi in soil C dynamics, and propose new directions that hold promise to resolve competing hypotheses and contrasting observations. In this Viewpoint, we summarize these deliberations and identify areas of inquiry that hold promise for increasing our understanding of these fundamental and widespread plant symbionts and their role in ecosystem-level biogeochemistry.


Asunto(s)
Carbono/metabolismo , Micorrizas/fisiología , Microbiología del Suelo , Suelo/química , Nitrógeno/metabolismo , Filogenia
7.
Ecol Lett ; 22(3): 498-505, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30609141

RESUMEN

Despite being a significant input into soil carbon pools of many high-latitude ecosystems, little is known about the effects of climate change on the turnover of mycorrhizal fungal necromass. Here, we present results from the first experiment examining the effects of climate change on the long-term decomposition of mycorrhizal necromass, utilising the Spruce and Peatland Response Under Changing Environments (SPRUCE) experiment. Warming significantly increased necromass decomposition rates but was strongest in normally submerged microsites where warming caused water table drawdown. Necromass chemistry exerted the strongest control on the decomposition, with initial nitrogen content strongly predicting early decay rates (3 months) and initial melanin content determining mass remaining after 2 years. Collectively, our results suggest that as global temperatures rise, variation in species biochemical traits as well as microsites where mycorrhizal necromass is deposited will determine how these important inputs contribute to the belowground storage of carbon in boreal peatlands.


Asunto(s)
Cambio Climático , Micorrizas , Ciclo del Carbono , Ecosistema , Melaninas , Suelo
8.
Mycorrhiza ; 28(7): 577-586, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30014212

RESUMEN

To new generations of scientists beginning their careers in research, we strongly recommend the practice of reading older literature. To illustrate the value of doing so, we highlight six insights of one of the most influential mycorrhiza researchers of the twentieth century, Jack Harley. These insights concerning mycotrophy, the new niche, the sheath, C cycling, N cycling, and mutualism were published prior to 1975 and so may have escaped the notice of many, but they laid the groundwork for some of the most important research of today.


Asunto(s)
Botánica/historia , Micología/historia , Micorrizas/fisiología , Historia del Siglo XX
9.
New Phytol ; 215(1): 27-37, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28295373

RESUMEN

Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual roots to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.


Asunto(s)
Ecosistema , Raíces de Plantas/fisiología , Botánica/métodos , Botánica/tendencias , Modelos Biológicos , Micorrizas , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología
10.
Glob Chang Biol ; 23(4): 1598-1609, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27658686

RESUMEN

Rising temperatures associated with climate change have been shown to negatively affect the photosynthetic rates of boreal forest tree saplings at their southern range limits. To quantify the responses of ectomycorrhizal (EM) fungal communities associated with poorly performing hosts, we sampled the roots of Betula papyrifera and Abies balsamea saplings growing in the B4Warmed (Boreal Forest Warming at an Ecotone in Danger) experiment. EM fungi on the root systems of both hosts were compared from ambient and +3.4 °C air and soil warmed plots at two sites in northern Minnesota. EM fungal communities were assessed with high-throughput sequencing along with measures of plant photosynthesis, soil temperature, moisture, and nitrogen. Warming selectively altered EM fungal community composition at both the phylum and genus levels, but had no significant effect on EM fungal operational taxonomic unit (OTU) diversity. Notably, warming strongly favored EM Ascomycetes and EM fungi with short-contact hyphal exploration types. Declining host photosynthetic rates were also significantly inversely correlated with EM Ascomycete and EM short-contact exploration type abundance, which may reflect a shift to less carbon demanding fungi due to lower photosynthetic capacity. Given the variation in EM host responses to warming, both within and between ecosystems, better understanding the link between host performance and EM fungal community structure will to clarify how climate change effects cascade belowground.


Asunto(s)
Cambio Climático , Microbiología del Suelo , Abies , Betula , Ecosistema , Bosques , Micorrizas , Taiga , Árboles
11.
New Phytol ; 209(4): 1382-94, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26365785

RESUMEN

In forest ecosystems, ectomycorrhizal and saprotrophic fungi play a central role in the breakdown of soil organic matter (SOM). Competition between these two fungal guilds has long been hypothesized to lead to suppression of decomposition rates, a phenomenon known as the 'Gadgil effect'. In this review, we examine the documentation, generality, and potential mechanisms involved in the 'Gadgil effect'. We find that the influence of ectomycorrhizal fungi on litter and SOM decomposition is much more variable than previously recognized. To explain the inconsistency in size and direction of the 'Gadgil effect', we argue that a better understanding of underlying mechanisms is required. We discuss the strengths and weaknesses of each of the primary mechanisms proposed to date and how using different experimental methods (trenching, girdling, microcosms), as well as considering different temporal and spatial scales, could influence the conclusions drawn about this phenomenon. Finally, we suggest that combining new research tools such as high-throughput sequencing with experiments utilizing natural environmental gradients will significantly deepen our understanding of the 'Gadgil effect' and its consequences on forest soil carbon and nutrient cycling.


Asunto(s)
Ciclo del Carbono , Bosques , Hongos/fisiología , Modelos Biológicos , Microbiología del Suelo , Investigación
12.
New Phytol ; 207(3): 505-18, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25756288

RESUMEN

Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.


Asunto(s)
Ecosistema , Raíces de Plantas/fisiología , Biomasa , Micorrizas/fisiología , Carácter Cuantitativo Heredable
14.
Ecology ; 93(1): 24-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22486083

RESUMEN

Ectomycorrhizal fungal tissues comprise a significant forest-litter pool. Ectomycorrhizal (EM) fungi may also influence the decomposition of other forest-litter components via competitive interactions with decomposer fungi and by ensheathing fine roots. Because of these direct and indirect effects of ectomycorrhizal fungi, the factors that control the decomposition of EM fungi will strongly control forest-litter decomposition as a whole and, thus, ecosystem nutrient and carbon cycling. Some have suggested that chitin, a component of fungal cell walls, reduces fungal tissue decomposition because it is relatively recalcitrant. We therefore examined the change in chitin concentrations of EM fungal tissues during decomposition. Our results show that chitin is not recalcitrant relative to other compounds in fungal tissues and that its concentration is positively related to the decomposition of fungal tissues. Variation existing among EM fungal isolates in chitin concentration suggests that EM fungal community structure influences C and nutrient cycling.


Asunto(s)
Quitina/metabolismo , Ecosistema , Micorrizas/fisiología , Árboles/fisiología , Ciclo del Carbono , Micelio , Micorrizas/clasificación , Suelo/química , Especificidad de la Especie , Factores de Tiempo
16.
New Phytol ; 191(2): 508-514, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21418224

RESUMEN

In many forest ecosystems, fine root litter comprises a large pool of organic carbon and nutrients. In temperate climates ectomycorrhizal fungi colonize the roots of many forest plant species. If ectomycorrhizal colonization influenced root decomposition, it could significantly influence carbon sequestration and nutrient cycling. Fungal tissues and fine roots may decompose at different rates and, therefore, ectomycorrhizal colonization may either hasten or retard root decomposition. Unfortunately, no comparisons of the decomposition of roots and ectomycorrhizal fungi have yet been made. Therefore, we compared decomposition of Pinus resinosa fine roots and ectomycorrhizal fungi from a Pinus resinosa plantation. We also compared the decomposition rates of nonmycorrhizal Pinus resinosa fine roots with roots colonized by nine species of ectomycorrhizal fungi. We found that the several tested isolates of ectomycorrhizal fungi decomposed far more rapidly than the fine roots and that ectomycorrhizal colonization either had no significant effect on root decomposition or significantly increased root decomposition depending on the isolate of fungus. We conclude that the composition of an ectomycorrhizal fungal community may affect carbon and nutrient cycling through its influence on root decomposition.


Asunto(s)
Secuestro de Carbono/fisiología , Micorrizas/fisiología , Pinus/microbiología , Clima , Raíces de Plantas/microbiología , Suelo , Árboles/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...